您现在的位置是:首页 > 养生人群 > 男性 > Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

时间:2018-08-27 05:42  来源:  阅读次数: 复制分享 我要评论

Bolei Zhou、Yuning Jiang、Jian Sun

近日,Neuromation 团队在 Medium 上撰文介绍其最研究成果:利用卷积神经网络(CNN)评估儿童骨龄,这一自动骨龄评估系统可以得到与放射科专家相似或更好的结果。该团队评估了手骨不同区域,发现仅对掌骨和近端指骨进行评估,得到的结果与对整个手骨进行评估的结果相差无几。为了克服放射图像的质量和多样性问题,该团队引入了严格的清理和标准化过程,以增强模型的鲁棒性和准确率,提升骨龄评估的准确率、提高结果的可复现性以及临床医生的效率。

Alexander 的论文《Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks》(Vladimir Iglovikov、Alexander Kalinin 以及 Alexey Shvets 联合完成的一项工作)已经发表在第 4 届 Deep Learning in Medical Image Analysis(DLMIA 2018)Workshop 上。这不是 Neuromation 在医学影像方面发表的第一篇论文,但这是一个深入了解该研究细节的好机会。与我们之前发表的关于医疗概念规范化的文章()相似,这是一件严肃且相当复杂的事。

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估


骨龄反映了你的年龄:骨龄评估

骨龄,基本上就是指你的骨头看起来多大了。随着孩子的成长,他的骨骼也在逐渐成长。这就意味着你可以通过观察儿童的骨骼,根据具备此类骨骼的儿童的平均年龄来了解这个孩子多大了。这时候你可能会想这是不是一篇考古学方面的文章:毕竟活着的小孩应该并不怎么拍 X 光。

这么想是对的,但是也不对。正常发育的话,儿童的骨龄应该在生理年龄(日历年龄)的上下 10% 区间内波动。但也有例外,例如,孩子青春期的生长突增可能会影响骨龄。因此,如果骨龄比生理年龄大几年的话,该儿童就会提前停止生长,而如果骨骼比较「年轻」的话,则可能会出现延迟的生长突增。此外,在给定身高和骨龄的情况下,你可以准确预测这个孩子的成年身高,这也可以派上一些用场:如果你的孩子喜欢篮球,你可能想知道他未来身高能否超过 7 英尺。

还有一些例外情况:骨龄和生理年龄严重不匹配是预示着身体出现问题,如成长障碍和内分泌问题等。骨龄只能告诉医生患者在特定时间时骨骼的相对成熟度,还要和其他临床指标结合才能区分出是正常生长还是生长相对提前或迟缓。连续的骨龄读数可以说明儿童的发育方向或治疗进展。通过评估骨龄,儿科医生可以诊断儿童发育过程中的内分泌和代谢紊乱问题,如骨发育不良或受营养、代谢或其他未知因素影响的生长缺陷,这可能会损害骨骺或骨质成熟。在这种生长迟缓情况下,骨龄和身高可能会有相同程度的延迟,但是经过治疗,此类儿童仍可达到正常成年人的身高。

综上所述,儿科医生常常会用 X 光照射儿童手部来评估其骨龄……所以自动化是一个很大的问题。

读手骨:从手掌和手腕评估骨龄

骨骼成熟度主要是通过骨骺中次级骨化中心的发育和骨化程度来评估的。几十年来,评估骨骼成熟度通常是根据对手骨和手腕的骨骼发育情况进行可视化评估来进行的。以下是放射科医生在查看手部 X 光片时看到的内容:

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

现在评估骨龄的两种最常用的技术是 Greulich-Pyle 法和 Tanner-Whitehouse(TW2)法。这两种方法都是根据成熟度指标,用左手手掌和手腕的放射图像评估骨骼成熟度,即管状骨的骨骺从骨化的最早阶段到它们和骨干融合的过程中放射影像呈现出的变化,或者是扁骨在变成成年人骨骼形状之前在放射影像上呈现出来的变化……别担心,我们在此之前也没听过这些。我们将这一过程展示在下图中:

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

像 GP 或 TW2 这样的传统评估骨骼成熟度的技术耗时较久,从一定程度上说也太过主观,因此一些高级的放射科医生也不总是认可这些结果。因此,使用计算机辅助诊断系统提升骨龄评估的准确率、提高结果的可复现性以及临床医生的效率就变得很诱人了。

近期,一些基于深度学习的方法已经证明在解决生物医学领域的多个问题时性能优于传统的机器学习方法。而在医学成像领域,卷积神经网络已经成功应用于糖尿病视网膜病变筛查、乳腺癌组织学成像分析、骨骼疾病预测以及一些其他问题中。如果你想深入了解这些应用,请参阅我们之前的文章()。

因此我们试着将现代深度神经网络架构应用于骨龄评估。下文将描述用全自动深度学习方法解决骨龄评估问题的完整过程,我们所用的数据来自儿科骨龄估计挑战赛(),该比赛由北美放射学会(RSNA)举办。尽管我们的主要目标是要获得尽可能高的准确率,但还是要保持系统的鲁棒性,克服不同医疗中心的不同硬件所生成 X 光片的质量问题和多样性问题。

数据


数据集来自于举办了儿科骨龄挑战赛 2017 的 RSNA。他们从斯坦福儿童医院和科罗拉多儿童医院获取了放射图像,这些图像是在不同时间不同条件下用不同设备拍出来的。专业的儿科放射医师对这些图像进行注释,他们将这些图像与 Greulich 和 Pyle 所著《手部骨骼发育放射图解》进行比较,并在报告中记录骨龄。大赛组委会从这些报告中提取了骨龄信息,并将其作为模型训练的真值。

放射图像在比例、方向、曝光等方面各不相同,而且通常会带有特定的标记。完整的 RSNA 数据集包含 12,611 个训练图像、1,425 个验证图像以及 200 个测试图像。显而易见测试集特别小,且在开发阶段我们并不知道其标签,因此我们从训练集中取出 1000 张放射图像,在这些图像上对模型进行测试。

训练数据包含 5778 名女性和 6833 名男性的放射图像。他们的年龄从 1 个月到 228 个月不等,受试者多为 5 到 15 岁的儿童:

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

预处理 I:分割和对比

我们工作的关键贡献之一是进行了严格的预处理。为了防止模型因图像伪影学习到错误信息,我们首先通过图像分割来移除图像背景。